Markdown is a text-to-HTML conversion tool for web writers. Markdown allows you to write using an easy-to-read, easy-to-write plain text format, then convert it to structurally valid XHTML (or HTML). A Markdown document could contain chunks of embedded graphics, source codes and LaTex formula. LaTeX is a high-quality typesetting system; it includes features designed for the production of technical and scientific documentation. A basic knowledge about Markdown and LaTeX could let to create HTML documents such as weblogs or reports very easily. This tutorial provides a quick reference to use Markdown and LaTeX.
The following provides a quick reference to the most commonly used Markdown syntax.
# Markdown
The following provides a quick reference to the most commonly used Markdown syntax.
## Headers
### H3
#### H4
##### H5
###### H6
Italic and Bold
*Italic* and **Bold**
Scratched Text
~~Scratched Text~~
superscript2
superscript^2^
Markdown doesn’t support underline, but we can use HTML Text instead. Also, we can render almost any HTML code that we like such as superscript2.
<u>HTML Text</u> instead. Also, <b>we</b> can <i>render</i> almost any <span style="color:red;">HTML</span> code that we <kbd>like</kbd> such as superscript<sup>2</sup>. Markdown doesn't support underline, but we can use
For manual line or page breaks, we can use following HTML and CSS codes:
<br />
:always;"></p> <p style="page-break-after
- Item 1
- Item 2
- Item 2a (2 tabs)
- Item 2b
- Item 2b-1 (4 tabs)
- Item 2b-2
1. Item 1
2. Item 2
3. Item 3
- Item 3a
- Item 3b
[Github](http://www.github.com/)
<p align="center">
![logo](https://www.raspberrypi.org/app/uploads/2018/03/RPi-Logo-Reg-SCREEN-199x250.png "Raspberry pi")
</p>
Note that here we used an HTML code to align center the image. Also, we can use HTML to add more styles, for example:
<p align="center">
<img src="https://www.raspberrypi.org/app/uploads/2018/03/RPi-Logo-Reg-SCREEN-199x250.png" alt="Raspberry pi" style="width:20%; border:0;">
</p>
Imagination is more important than knowledge.
Albert Einstein
> Imagination is more important than knowledge.
>
> Albert Einstein
Use three dashes ---
to draw an horizontal line
like:
---
1st Header | 2nd Header | 3rd Header |
---|---|---|
col 1 is | left-aligned | 1 |
col 2 is | center-aligned | 2 |
col 3 is | right-aligned | 3 |
1st Header|2nd Header|3rd Header
---|:---:|---:
col 1 is|left-aligned|1
col 2 is|center-aligned|2 col 3 is|right-aligned|3
Note that we can use HTML styles to hide tables’ overflow by putting them in a division like:
<div "margin-bottom: 1rem; overflow-x: auto;">
...</div>
Also, we can use overflow-x: scroll
to always scroll or
overflow-x: hidden
to hide them compeletely.
In Markdown, we can simply add plain code blocks to display (not
evaluating) by inserting triple back quote i.e. ```
. For
example:
= function(x) {
norm sqrt(x%*%x)
}norm(1:4)
` ``r
norm <- function(x) {
sqrt(x%*%x)
}
norm(1:4) ` ``
For inline plain codes use single back quote before and after the
code, for example we defined this codes here
in this
way.
At the top of a Markdown document, we can insert the following meta data such that:
---
title: "Page Title"
subtitle: "Page sub-title"
author: "Author name"
description: "This is a test"
institute: "MU"
date: "20/02/2020"
abstract: "YAML"
keywords:
- key1
- key2
tags:
- tag1
- tag2
---
We can use LaTeX to write mathematical equations in Markdown. To
write inline LaTeX formula use a single $
before and after
the equation and use a double $
to display equations.
The following provides a quick reference of the most commonly used LaTeX syntax. You may find a more extensive references about mathematical formulas at LaTeX Wikibooks.
Inline equation: \(equation\)
Inline equation: $equation$
Display equation: \[equation\]
Display equation: $$equation$$
- $x + y$
- $x - y$
- $x \times y$
- $x \div y$
- $\dfrac{x}{y}$
- $\sqrt{x}$
- $\pi \approx 3.14159$
- $\pm \, 0.2$
- $\dfrac{0}{1} \neq \infty$
- $0 < x < 1$
- $0 \leq x \leq 1$
- $x \geq 10$
- $\forall \, x \in (1,2)$
- $\exists \, x \notin [0,1]$
- $A \subset B$
- $A \subseteq B$
- $A \cup B$
- $A \cap B$
- $X \implies Y$
- $X \impliedby Y$
- $a \to b$
- $a \longrightarrow b$
- $a \Rightarrow b$
- $a \Longrightarrow b$
- $a \propto b$
- $\bar a$
- $\tilde a$
- $\breve a$
- $\hat a$
- $a^ \prime$
- $a^ \dagger$
- $a^ \ast$
- $a^ \star$
- $\mathcal A$
- $\mathrm a$
- $\cdots$
- $\vdots$
- $\#$
- $\$$
- $\%$
- $\&$
- $\{ \}$
- $\_$
\quad
\qquad
\,
\:
\;
\!
Small Letter | Capital Letter | Alternative |
---|---|---|
\(\alpha\) \alpha |
\(A\) A |
|
\(\beta\) \beta |
\(B\) B |
|
\(\gamma\) \gamma |
\(\Gamma\) \Gamma |
|
\(\delta\) \delta |
\(\Delta\) \Delta |
|
\(\epsilon\)
\epsilon |
\(E\) E |
\(\varepsilon\)
\varepsilon |
\(\zeta\) \zeta |
\(Z\) Z |
|
\(\eta\) \eta |
\(H\) H |
|
\(\theta\) \theta |
\(\Theta\) \Theta |
\(\vartheta\)
\vartheta |
\(\iota\) \zeta |
\(I\) I |
|
\(\kappa\) \kappa |
\(K\) K |
\(\varkappa\)
\varkappa |
\(\lambda\)
\lambda |
\(\Lambda\)
\Lambda |
|
\(\mu\) \mu |
\(M\) M |
|
\(\nu\) \nu |
\(N\) N |
|
\(\xi\) \xi |
\(\Xi\) \Xi |
|
\(\omicron\)
\omicron |
\(O\) O |
|
\(\pi\) \pi |
\(\Pi\) \Pi |
\(\varpi\) \varpi |
\(\rho\) \rho |
\(P\) P |
\(\varrho\)
\varrho |
\(\sigma\) \sigma |
\(\Sigma\) \Sigma |
\(\varsigma\)
\varsigma |
\(\tau\) \tau |
\(T\) T |
|
\(\upsilon\)
\upsilon |
\(\Upsilon\)
\Upsilon |
|
\(\phi\) \phi |
\(\Phi\) \Phi |
\(\varphi\)
\varphi |
\(\chi\) \chi |
\(X\) X |
|
\(\psi\) \psi |
\(\Psi\) \Psi |
|
\(\omega\) \omega |
\(\Omega\) \Omega |
\[\mathbb{N} = \{ a \in \mathbb{Z} : a > 0 \}\]
\{ a \in \mathbb{Z} : a > 0 \}$$ $$\mathbb{N} =
\[\forall \; x \in X \quad \exists \; y \leq \epsilon\]
$$\forall \; x \in X \quad \exists \; y \leq \epsilon$$
\[\color{blue}{X \sim Normal \; (\mu,\sigma^2)}\]
$$\color{blue}{X \sim Normal \; (\mu,\sigma^2)}$$
\[P \left( A=2 \, \middle| \, \dfrac{A^2}{B}>4 \right)\]
$$P \left( A=2 \, \middle| \, \dfrac{A^2}{B}>4 \right)$$
\[f(x) = x^2 - x^\frac{1}{\pi}\]
$$f(x) = x^2 - x^\frac{1}{\pi}$$
\[f(X,n) = X_n + X_{n-1}\]
$$f(X,n) = X_n + X_{n-1}$$
\[f(x) = \sqrt[3]{2x} + \sqrt{x-2}\]
[3]{2x} + \sqrt{x-2}$$ $$f(x) = \sqrt
\[\mathrm{e} = \sum_{n=0}^{\infty} \dfrac{1}{n!}\]
$$\mathrm{e} = \sum_{n=0}^{\infty} \dfrac{1}{n!}$$
\[\prod_{i=1}^{n} x_i - 1\]
$$\prod_{i=1}^{n} x_i - 1$$
\[\lim_{x \to 0^+} \dfrac{1}{x} = \infty\]
$$\lim_{x \to 0^+} \dfrac{1}{x} = \infty$$
\[\int_a^b y \: \mathrm{d}x\]
$$\int_a^b y \: \mathrm{d}x$$
\[\log_a b = 1\]
$$\log_a b = 1$$
\[\min(P) = \max_{i:S_i \in S} S_i\]
$$\max(S) = \max_{i:S_i \in S} S_i$$
\[\dfrac{n!}{k!(n-k)!} = \binom{n}{k}\]
$$\dfrac{n!}{k!(n-k)!} = \binom{n}{k}$$
\[\small \text{$\dfrac{b}{a+b}=3, \:$ therefore we can set $\: a=6$}\]
$$\text{$\dfrac{b}{a+b}=3, \:$ therefore we can set $\: a=6$}$$
\[ f(x)= \begin{cases} 1/d_{ij} & \quad \text{when $d_{ij} \leq 160$}\\ 0 & \quad \text{otherwise} \end{cases} \]
$$
f(x)=
\begin{cases}\\
1/d_{ij} & \quad \text{when $d_{ij} \leq 160$}
0 & \quad \text{otherwise}
\end{cases} $$
\[ \begin{matrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{matrix} \]
$$
\begin{matrix}\\
1 & 2 & 3 \\
4 & 5 & 6
7 & 8 & 9
\end{matrix} $$
\[ M = \begin{bmatrix} \frac{5}{6} & \frac{1}{6} & 0 \\[0.3em] \frac{5}{6} & 0 & \frac{1}{6} \\[0.3em] 0 & \frac{5}{6} & \frac{1}{6} \end{bmatrix} \]
$$
M =
\begin{bmatrix}\\[0.3em]
\frac{5}{6} & \frac{1}{6} & 0 \\[0.3em]
\frac{5}{6} & 0 & \frac{1}{6}
0 & \frac{5}{6} & \frac{1}{6}
\end{bmatrix} $$
\[ M = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \]
$$
M =
\begin{bmatrix}\\
1 & 0
0 & 1
\end{bmatrix}
\begin{bmatrix}\\
1 & 0
0 & 1
\end{bmatrix} $$
\[ M = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \]
$$
M =
\begin{pmatrix}\\
1 & 0
0 & 1
\end{pmatrix}
\begin{pmatrix}\\
1 & 0
0 & 1
\end{pmatrix} $$
\[ A_{m,n} = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} \end{pmatrix} \]
$$
A_{m,n} =
\begin{pmatrix}\\
a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\
a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\
\vdots & \vdots & \ddots & \vdots
a_{m,1} & a_{m,2} & \cdots & a_{m,n}
\end{pmatrix} $$
\(\Huge Hello!\)
\(\huge Hello!\)
\(\LARGE Hello!\)
\(\Large Hello!\)
\(\large Hello!\)
\(\normalsize Hello!\)
\(\small Hello!\)
\(\scriptsize Hello!\)
\(\tiny Hello!\)
$\Huge Hello!$
$\huge Hello!$
$\LARGE Hello!$
$\Large Hello!$
$\large Hello!$
$\normalsize Hello!$
$\small Hello!$
$\scriptsize Hello!$ $\tiny Hello!$
Example: \[\small \text{Font size is small, eg. $\sum{x_i = 10}$}\]
$$\small \text{Font size is small, eg. $\sum{x_i = 10}$}$$