Markdown and LaTeX introduction
Markdown is a text-to-HTML conversion tool for web writers. Markdown allows you to write using an easy-to-read, easy-to-write plain text format, then convert it to structurally valid XHTML (or HTML). A Markdown document could contain chunks of embedded graphics, source codes and LaTex formula. LaTeX is a high-quality typesetting system; it includes features designed for the production of technical and scientific documentation. A basic knowledge about Markdown and LaTeX could let to create HTML documents such as weblogs or reports very easily. This tutorial provides a quick reference to use Markdown and LaTeX.
Markdown
The following provides a quick reference to the most commonly used Markdown syntax.
Headers
H3
H4
H5
H6
# Markdown
The following provides a quick reference to the most commonly used Markdown syntax.
## Headers
### H3
#### H4
##### H5
###### H6Emphasis
Italic and Bold
*Italic* and **Bold**Scratched Text
~~Scratched Text~~superscript2
superscript^2^Markdown doesn’t support underline, but we can use HTML Text instead. Also, we can render almost any HTML code that we like such as superscript2.
Markdown doesn't support underline, but we can use <u>HTML Text</u> instead. Also, <b>we</b> can <i>render</i> almost any <span style="color:red;">HTML</span> code that we <kbd>like</kbd> such as superscript<sup>2</sup>.For manual line or page breaks, we can use following HTML and CSS codes:
- Line breaks:
<br />- Print breaks:
<p style="page-break-after:always;"></p>Lists
- Item 1
- Item 2
- Item 2a
- Item 2b
- Item 2b-1
- Item 2b-2
- Item 1
- Item 2
- Item 2a (2 tabs)
- Item 2b
- Item 2b-1 (4 tabs)
- Item 2b-2- Item 1
- Item 2
- Item 3
- Item 3a
- Item 3b
1. Item 1
2. Item 2
3. Item 3
- Item 3a
- Item 3bLinks
[Github](http://www.github.com/)Images
<p align="center">

</p>Note that here we used an HTML code to align center the image. Also, we can use HTML to add more styles, for example:
<p align="center">
<img src="https://www.raspberrypi.org/app/uploads/2018/03/RPi-Logo-Reg-SCREEN-199x250.png" alt="Raspberry pi" style="width:20%; border:0;">
</p>Quotes
Imagination is more important than knowledge.
Albert Einstein
> Imagination is more important than knowledge.
>
> Albert EinsteinHlines
Use three dashes --- to draw an horizontal line
like:
---Tables
| 1st Header | 2nd Header | 3rd Header |
|---|---|---|
| col 1 is | left-aligned | 1 |
| col 2 is | center-aligned | 2 |
| col 3 is | right-aligned | 3 |
1st Header|2nd Header|3rd Header
---|:---:|---:
col 1 is|left-aligned|1
col 2 is|center-aligned|2
col 3 is|right-aligned|3Note that we can use HTML styles to hide tables’ overflow by putting them in a division like:
<div "margin-bottom: 1rem; overflow-x: auto;">
...
</div>Also, we can use overflow-x: scroll to always scroll
or overflow-x: hidden to hide them compeletely.
Code blocks
In Markdown, we can simply add plain code blocks to display (not
evaluating) by inserting triple back quote i.e. ```. For
example:
norm = function(x) {
sqrt(x%*%x)
}
norm(1:4)` ``r
norm <- function(x) {
sqrt(x%*%x)
}
norm(1:4)
` ``For inline plain codes use single back quote before and after the
code, for example we defined this codes here in this
way.
YAML header
At the top of a Markdown document, we can insert the following meta data such that:
---
title: "Page Title"
subtitle: "Page sub-title"
author: "Author name"
description: "This is a test"
institute: "MU"
date: "20/02/2020"
abstract: "YAML"
keywords:
- key1
- key2
tags:
- tag1
- tag2
---Mathematical formula
We can use LaTeX to write mathematical equations in Markdown. To
write inline LaTeX formula use a single $ before and
after the equation and use a double $ to display
equations.
LaTeX
The following provides a quick reference of the most commonly used LaTeX syntax. You may find a more extensive references about mathematical formulas at LaTeX Wikibooks.
LaTeX equations
Inline equation: \(equation\)
Inline equation: $equation$Display equation: \[equation\]
Display equation: $$equation$$Operators
- \(x + y\)
- \(x - y\)
- \(x \times y\)
- \(x \div y\)
- \(\dfrac{x}{y}\)
- \(\sqrt{x}\)
- $x + y$
- $x - y$
- $x \times y$
- $x \div y$
- $\dfrac{x}{y}$
- $\sqrt{x}$Symbols
- \(\pi \approx 3.14159\)
- \(\pm \, 0.2\)
- \(\dfrac{0}{1} \neq \infty\)
- \(0 < x < 1\)
- \(0 \leq x \leq 1\)
- \(x \geq 10\)
- \(\forall \, x \in (1,2)\)
- \(\exists \, x \notin [0,1]\)
- \(A \subset B\)
- \(A \subseteq B\)
- \(A \cup B\)
- \(A \cap B\)
- \(X \implies Y\)
- \(X \impliedby Y\)
- \(a \to b\)
- \(a \longrightarrow b\)
- \(a \Rightarrow b\)
- \(a \Longrightarrow b\)
- \(a \propto b\)
- $\pi \approx 3.14159$
- $\pm \, 0.2$
- $\dfrac{0}{1} \neq \infty$
- $0 < x < 1$
- $0 \leq x \leq 1$
- $x \geq 10$
- $\forall \, x \in (1,2)$
- $\exists \, x \notin [0,1]$
- $A \subset B$
- $A \subseteq B$
- $A \cup B$
- $A \cap B$
- $X \implies Y$
- $X \impliedby Y$
- $a \to b$
- $a \longrightarrow b$
- $a \Rightarrow b$
- $a \Longrightarrow b$
- $a \propto b$- \(\bar a\)
- \(\tilde a\)
- \(\breve a\)
- \(\hat a\)
- \(a^ \prime\)
- \(a^ \dagger\)
- \(a^ \ast\)
- \(a^ \star\)
- \(\mathcal A\)
- \(\mathrm a\)
- \(\cdots\)
- \(\vdots\)
- \(\#\)
- \(\$\)
- \(\%\)
- \(\&\)
- \(\{ \}\)
- \(\_\)
- $\bar a$
- $\tilde a$
- $\breve a$
- $\hat a$
- $a^ \prime$
- $a^ \dagger$
- $a^ \ast$
- $a^ \star$
- $\mathcal A$
- $\mathrm a$
- $\cdots$
- $\vdots$
- $\#$
- $\$$
- $\%$
- $\&$
- $\{ \}$
- $\_$Space
- Horizontal space:
\quad - Large horizontal space:
\qquad - Small space:
\, - Medium space:
\: - Large space:
\; - Negative space:
\!
Greek alphabets
| Small Letter | Capital Letter | Alternative |
|---|---|---|
\(\alpha\)
\alpha |
\(A\) A |
|
\(\beta\) \beta |
\(B\) B |
|
\(\gamma\)
\gamma |
\(\Gamma\)
\Gamma |
|
\(\delta\)
\delta |
\(\Delta\)
\Delta |
|
\(\epsilon\)
\epsilon |
\(E\) E |
\(\varepsilon\)
\varepsilon |
\(\zeta\) \zeta |
\(Z\) Z |
|
\(\eta\) \eta |
\(H\) H |
|
\(\theta\)
\theta |
\(\Theta\)
\Theta |
\(\vartheta\)
\vartheta |
\(\iota\) \zeta |
\(I\) I |
|
\(\kappa\)
\kappa |
\(K\) K |
\(\varkappa\)
\varkappa |
\(\lambda\)
\lambda |
\(\Lambda\)
\Lambda |
|
\(\mu\) \mu |
\(M\) M |
|
\(\nu\) \nu |
\(N\) N |
|
\(\xi\) \xi |
\(\Xi\) \Xi |
|
\(\omicron\)
\omicron |
\(O\) O |
|
\(\pi\) \pi |
\(\Pi\) \Pi |
\(\varpi\)
\varpi |
\(\rho\) \rho |
\(P\) P |
\(\varrho\)
\varrho |
\(\sigma\)
\sigma |
\(\Sigma\)
\Sigma |
\(\varsigma\)
\varsigma |
\(\tau\) \tau |
\(T\) T |
|
\(\upsilon\)
\upsilon |
\(\Upsilon\)
\Upsilon |
|
\(\phi\) \phi |
\(\Phi\) \Phi |
\(\varphi\)
\varphi |
\(\chi\) \chi |
\(X\) X |
|
\(\psi\) \psi |
\(\Psi\) \Psi |
|
\(\omega\)
\omega |
\(\Omega\)
\Omega |
Equations
\[\mathbb{N} = \{ a \in \mathbb{Z} : a > 0 \}\]
$$\mathbb{N} = \{ a \in \mathbb{Z} : a > 0 \}$$\[\forall \; x \in X \quad \exists \; y \leq \epsilon\]
$$\forall \; x \in X \quad \exists \; y \leq \epsilon$$\[\color{blue}{X \sim Normal \; (\mu,\sigma^2)}\]
$$\color{blue}{X \sim Normal \; (\mu,\sigma^2)}$$\[P \left( A=2 \, \middle| \, \dfrac{A^2}{B}>4 \right)\]
$$P \left( A=2 \, \middle| \, \dfrac{A^2}{B}>4 \right)$$\[f(x) = x^2 - x^\frac{1}{\pi}\]
$$f(x) = x^2 - x^\frac{1}{\pi}$$\[f(X,n) = X_n + X_{n-1}\]
$$f(X,n) = X_n + X_{n-1}$$\[f(x) = \sqrt[3]{2x} + \sqrt{x-2}\]
$$f(x) = \sqrt[3]{2x} + \sqrt{x-2}$$\[\mathrm{e} = \sum_{n=0}^{\infty} \dfrac{1}{n!}\]
$$\mathrm{e} = \sum_{n=0}^{\infty} \dfrac{1}{n!}$$\[\prod_{i=1}^{n} x_i - 1\]
$$\prod_{i=1}^{n} x_i - 1$$\[\lim_{x \to 0^+} \dfrac{1}{x} = \infty\]
$$\lim_{x \to 0^+} \dfrac{1}{x} = \infty$$\[\int_a^b y \: \mathrm{d}x\]
$$\int_a^b y \: \mathrm{d}x$$\[\log_a b = 1\]
$$\log_a b = 1$$\[\min(P) = \max_{i:S_i \in S} S_i\]
$$\max(S) = \max_{i:S_i \in S} S_i$$\[\dfrac{n!}{k!(n-k)!} = \binom{n}{k}\]
$$\dfrac{n!}{k!(n-k)!} = \binom{n}{k}$$\[\small \text{$\dfrac{b}{a+b}=3, \:$ therefore we can set $\: a=6$}\]
$$\text{$\dfrac{b}{a+b}=3, \:$ therefore we can set $\: a=6$}$$Functions
\[ f(x)= \begin{cases} 1/d_{ij} & \quad \text{when $d_{ij} \leq 160$}\\ 0 & \quad \text{otherwise} \end{cases} \]
$$
f(x)=
\begin{cases}
1/d_{ij} & \quad \text{when $d_{ij} \leq 160$}\\
0 & \quad \text{otherwise}
\end{cases}
$$Matrices
\[ \begin{matrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{matrix} \]
$$
\begin{matrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{matrix}
$$\[ M = \begin{bmatrix} \frac{5}{6} & \frac{1}{6} & 0 \\[0.3em] \frac{5}{6} & 0 & \frac{1}{6} \\[0.3em] 0 & \frac{5}{6} & \frac{1}{6} \end{bmatrix} \]
$$
M =
\begin{bmatrix}
\frac{5}{6} & \frac{1}{6} & 0 \\[0.3em]
\frac{5}{6} & 0 & \frac{1}{6} \\[0.3em]
0 & \frac{5}{6} & \frac{1}{6}
\end{bmatrix}
$$\[ M = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \]
$$
M =
\begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix}
$$\[ M = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \]
$$
M =
\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}
$$\[ A_{m,n} = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} \end{pmatrix} \]
$$
A_{m,n} =
\begin{pmatrix}
a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\
a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m,1} & a_{m,2} & \cdots & a_{m,n}
\end{pmatrix}
$$Font sizes
\(\Huge Hello!\)
\(\huge Hello!\)
\(\LARGE Hello!\)
\(\Large Hello!\)
\(\large Hello!\)
\(\normalsize Hello!\)
\(\small Hello!\)
\(\scriptsize Hello!\)
\(\tiny Hello!\)
$\Huge Hello!$
$\huge Hello!$
$\LARGE Hello!$
$\Large Hello!$
$\large Hello!$
$\normalsize Hello!$
$\small Hello!$
$\scriptsize Hello!$
$\tiny Hello!$Example: \[\small \text{Font size is small, eg. $\sum{x_i = 10}$}\]
$$\small \text{Font size is small, eg. $\sum{x_i = 10}$}$$